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LETTER TO THE EDITOR 

Relating different Poisson brackets of the K d v  system to various 
symmetry conditions of the model 

A Kundu and  B Basu Mallick 
Theoretical Nuclear Physics Division, Saha Institute of Nuclear Physics, 92, Acharya 
Prafulla Chandra Road, Calcutta-700009, India 

Received 21 March 1990 

Abstract. Three different Poisson bracket ( P B )  structures are known to exist for the K d V  
system. Using the non-ultralocal canonical property through the r, s-matrix formalism we 
are able to show that these PBS are originated from different symmetry conditions of the 
model, e.g. periodicity, antiperiodicity and aperiodicity. 

Interest in the Hamiltonian structure of the K d v  system has been revived recently [ 1-31. 
The conventional Poisson bracket ( PB) of this model was suggested long ago by Gardner, 
Zakharov and  Faddeev which for functionals F [ u ]  and G[u]  may be given by 

Thereafter quite recently Faddeev and Takhtajan (FT) pointed out that the PB used 
earlier does not satisfy Jacobi identity and proposed an  extension of it with a ‘surface’ 
term: 

{ F, G) FT = { F, GIds i- f [ F+ G- - F- G+I ( 2 )  

with F,  = GF/Su(x)\,,,,. Subsequently another extension of the PB was put forward 
by Arkadiev et a1 (APP) to remove the degeneracy of the FT bracket: 

{ F ,  G}APP = { F, G}d5 -$[ F+G- - F-G+]. (3) 

We aim here to explore some possible underlying symmetry behind the existence 
of these three different PB structures in the same system. We analyse the given problem 
through a n  approach, which manifestly exploits the integrability of the system using 
the matrix Lax operator and  the non-ultralocal PB structure (containing the derivative 
of &function) of the K d v  system. This formalism, based on the classical r-matrix 
method, was first suggested by Tsyplyaev [4] and later developed considerably by 
Maillet [ 5 ]  with the introduction of a novel s-matrix. Through a little extension of the 
above approach to infinite interval by introducing s, matrices we derive the PB relations 
between elements of the monodromy and scattering matrices in a compact matrix form. 

Referring to [5] for detail discussion of the r, s-matrix method we present here 
only a few steps along with our result relevant to the K d v  system. The Lax operator 
of the K d v  system may be given in the A K N S  form 

U (  z, A ) = i ( A m7 - U ( z ) U -  + a+) 
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with the non-ultralocal PB relation of the fundamental field: 
(&(x - y )  - SY(x - y ) ) / 2 ,  leading to the relation 

{ U(Z, A ) @  U(Z’, p ) }  = [S,,(Z - z‘) - S,(Z - z’)]u-@ 6 / 2 .  
3 

For the related monodromy matrix defined over some finite interv 
9 exp I,” U(x’, A )  dx’, one gets through an intermediate step 

1 as TC(A)= 

with P = f( 1 0  1 + X i  v i  0 vi). For investigating the effect of non-ultralocality we insert 
the particular cases (i)  x = 3 L, y = x’ = L, y ’  = - L and (ii)  x = y’ = -L ,  y = -3 L, x’ = L 
in the general formula (5) to obtain 

{ TF(A)O T b ~ ( p ) }  = ( T y ( A  )0 l ) s ~ ( 1 0  TkL(p) )  (7a)  

Note that the non-vanishing PB for adjacent intervals as found here reflects explicitly 
the non-ultralocal property of the system. On the other hand using the property 
T?\,(A) = T ~ ( A ) T L ~ ( A ) T T ~ ~ ( A )  we get 

{T%L(A)OTfL(P)) 

= { T ~ A ) @  T _ L ~ ( ~ ) ) ( T ~ ~ ~ ( A  )O 1) + W(A)O ~ ) { T ~ , ( A ) o  P L ( p ) }  

x ( T I ~ ~ ( A ) O  1) + ( T:L,(A 10 I){ TI;,(A )q  ~ 4 ~ ( p ) }  

which, with the use of (5) and (7a, b ) ,  simplifies to 

{ T ~ L ( A ) ~ T ~ L ( ~ ) } = T L ( A ,  P ) T ~ L ( P L ) -  Tf~(A)OTf,(p)r , (h ,p) .  (7c) 
In order now to link the various Poisson bracket structures ( l) ,  (2) and (3 )  to the 
underlying symmetry of the model, we consider boundary conditions with different 
types of symmetry, e.g., periodic, antiperiodic and aperiodic ones. Periodic models 
with the property u (xk2L)  = u(x) induce TL’,;:,(A) = TLL(A) .  Consequently, for 
periodic models any of ( 7 a ) ,  (76),  (7c)  might be taken as the definition for PB given 
in the symmetric form as { , }Per= ( 7 a ) + ( 7 b ) + ( 7 c )  leading to 

{ TL 9 fLher = rL TL 0 ?L - TL 0 fLrL + [ ( TL 0 1 )sL(  1 0 f L )  - (1 0 fL)sL( TL 0 1 ) ]  ( 8 a )  

with TL= TfL(A) and FL= TfL(p) .  
In  the antiperiodic model on the other hand, we have u ( x I 2 L ) = - u ( x ) ,  which 

from expression TL;;?, = ?? exp j ! :$ tL  U ( u ( x ) ,  A )  dx clearly yields T?’,;$,[u, A ]  = 
TLL[-u ,  A ]  after a shift in the integration variable. Therefore, for deriving the PB 
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between the monodromy matrices TLL[u, A ]  from (7a) and (76) we have to flip the 
sign of u ( x )  in T!:t:L[u, A]. However, since these PBS are proportional to U as seen 
from (4), it induces a change in the sign of PB ( 7 4  b )  leading to the definitions of 
{ , = (7c) - ( ( ? a )  + (76)) in the antiperiodic case, where (?a) ,  (76) indicates 
replacing T!r i :L[u ,A]  by TkL[-u,h] on the RHS of the respective equations. This 
ultimately results in 

{ TL o TL}Antiper  = rL TL o fL - T L  o f L r L  - 1 ( TL o 1 ) sL( 1 o fL) - ( 1 o f L )  SL ( T L  o 1 11. 
( 8 6 )  

Finally, in the aperiodic case, since TkL and TLI::, at adjacent intervals are no 
longer related, one may take (7c) alone as the definition of the corresponding PB yielding 

{ T L O f L } A p e r = r L T L O f L -  , TLOfLrL.  (8c) 

We consider now the infinite interval limit of these brackets, since P B ~  ( l ) ,  (2) ,  (3)  
for the K d v  system are defined essentially in this limit. Defining the scattering matrix 
as [61 

,'+ --s 

with the choice of asymptotic solutions 

one may shift now to the infinite interval limit of (8a, b, c). Thus we arrive at the relations 

{ T O f } p e r  = [r+TOf-  Tr-]*[(TO1)s+(1Of)-(1Of)s~(TO1)] (10a,6) 
' (Anriper l  

{ T O f } , , , , = [ r + T O f -  9 ~ 0 f r - 1  (10c) 
where T =  T ( A ) ,  ?= T ( A )  and 

rr  ( A, P ) = -ac+, 0 a 3  * f i  0 ( + I  F f 2  

@a, F ifda, @a,+ a 2 0 a l ) 2  F if4(a, Oar - a , @ a , ) / 2  

with 

(Y = (A '+p2) /8Ap(A '  - p 2 )  f i  = ix6(p)/8A fi = i d ( A ) / 8 p  

1 3 = i d A  - p ) 6 ( A  + p ) / 8 A p  

f 4 = i r ( A  + p ) 6 ( A  -p) /8Ap.  
and 

The matrix equations ( l o a ) ,  ( l o b )  and (1Oc) may now be expressed for the scattering 
matrix elements using (9).  However for the K d v  system, as is well known, the scattering 
elements may have a pole-type singularity at A + O  of the form [7] a ( A )  -im/2A and 
b ( A )  - -im/2A, where m is a constant of motion [8]. We shall consider here only the 
case when m # 0. Consideration of the said singularity structure in the equations 
(lOa)-(lOc) leads finally to the PB relations 
{In a ( A ) ,  In b ( p ) } = f ( A ,  p, e)- i r (G(A - p ) - 8 ( A  + ~ ) ) / 4 h  + ( l + & ) i m ? ( h ) / 4 p  
{ I n a ( A ) , I n a ( p ) } = O  
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with f ( A ,  p, E ) = ( ~ / ~ A ~ ) [ ( A ’ + c ~ . ’ ) / ( A ’ - c ~ . ~ ) - E ] ,  where E = O  corresponds to the 
aperiodic, E = +1 to the periodic and E = -1 to the antiperiodic cases. 

It is surprising to note that these PBS for the scattering matrix elements coincide 
exactly with those obtained from the definitions ( l ) ,  (2) and (3) [ l ,  31 and moreover, 
the periodic case ( E  = 1) corresponds to the Faddeev-Takhtajan bracket, antiperiodic 
case ( E  = -1) to the Arkadiev er a1 bracket, while the aperiodic case ( E  = 0) yields the 
Gardner-Zakharov-Faddeev bracket. Therefore the underlying symmetry behind the 
existence of three different PBS of the K d v  system, which is not evident at the infinite 
interval limit, becomes explicit at the finite interval and relates different PB structures 
to it. 
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